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The influence of radiative transfer 
on cellular convection 

By R. M. GOODY 
Department of Meteorology, lmpwial College, London 

(Receiced 19 M a y  1956) 

SUMMARY 
This paper presents an approximate solution of the problem of 

the onset of convection between plane-parallel plates heated from 
below when the fluid between them absorbs and emits thermal 
radiation. A complete solution to this problem would be 
extremely difficult, and the equation of radiative transfer is there- 
fore developed in two approximate forms, one appropriate to an 
opaque medium, the other to a transparent medium. This 
equation is then combined with the dynamical equations of the 
problem. 

The initial static state is investigated by use of the Milne- 
Eddington approximation, and it is shown that there can be very 
large variations of temperature near to the boundaries. 

The conditions for marginal stability are investigated both 
for motions which are restricted to the temperature boundary 
layer, and for motions which take place in the body of the fluid. 
In the former case it is found that a complete solution is provided 
by the approximate form for a transparent medium, and in the latter 
case a reasonable interpolation has to be made between results for 
the two approximate forms in order to complete the solution. 

The effect of radiative transfer both on the initial static state 
and on the dynamical equations is such that the fluid is stabilized. 
This stabilization could probably be detected in the laboratory 
under certain conditions. In the earth’s atmosphere the critical 
Rayleigh number for large scale motions may be increased by a 
factor lo5, while at  the surface of the solar photosphere the factor 
may be as large as 

1. INTRODUCTION 
The gaseous envelope of a star or planet must pass out to space a flux 

of radiative heat. This usually gives rise to motions in the atmosphere, 
so that the atmosphere will not be in radiative equilibrium but will have 
sources and sinks of radiative energy distributed through it. 

Investigators of the earth’s atmosphere always compute the field of 
radiative heating from observed temperature profiles, and attempt to find 
the field of motion consistent with it. This does not go to the heart of the 
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problem, however, for we wish to know what fields of temperature and 
motion are demanded by the radiative boundary conditions, not only 
whether they are consistent with one another. 

The aim of this paper is to explore the possibility of formulating the 
equations of motion and radiative transfer in a way which allows them to 
be solved directly in accordance with the boundary conditions. The 
problem chosen is that of the marginal stability of a fluid between parallel 
plates, heated from below. This is probably the simplest problem of its 
type, and the same problem in the absence of radiative transfer has been 
treated by many writers (see, for example, Pellew & Southwell (1940)). 
The fluid is assumed to be homogeneous in composition and incompressible, 
and the temperature to vary only slightly. The absorption coefficient of 
the fluid is assumed to be the same at all wavelengths, and to be independent 
of the physical state. The upper and lower boundaries to the fluid are 
assumed to be black bodies. 

2. T H E  DYNAMICAL EQUATIONS 

These were treated very fully by Pellew & Southwell (1940), whom we 
shall follow closely. The following symbols will be used: 

v = kinematic viscosity, 
u = coefficient of expansion, 
g = gravitational acceleration, 

x, y, 2: = rectangular coordinates (z  vertical and perpendicular to the 
plates), 

w = velocity component in the x direction, 
V2 = - + - + - = v 2  + - a2  a 2  a 2  a 2  

ax2 ay2 a22 1 & 2 '  

8 = temperature, 
a00 B0 = temperature in the initial static state, p = -, 

H = rate of radiative heating per unit volume of fluid, 

82. 
0' = e-do,  

H ,  = the same for the initial static state, 
H' = H - H o ,  
k = molecular thermal diffusivity, 
s = heat content of the fluid per cm3 per degree. 

The linearized equation governing the heat transfer by fluid motion in 
a steady state was given by Pellew & Southwell in the form 

Their derivation of equation (1) made use of the fact that, in the absence of 
radiative transfer, there is constant temperature gradient through the fluid 
in the initial static state. The same equation can, however, be obtained 
with no extra difficulty if the temperature gradient varies with z. 

The condition for a steady distribution of temperature is 

- vv4w = xgV$If. (1) 

W P  = HIS + kV28, (2) 
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which relates the convective, radiative and diffusive heating ; and the initial 
static state is determined by 

0 = Ho/s + kV20,. (3) 
Temperature will be assumed constant over the upper and lower boundaries, 
and therefore H, and 0, are functions of z only. The vector flux of radiative 
energy in the initial static state will be in the x direction, and will also be 
a function of z only. If F, is the z component of this flux, then 
H,, = -dF, /dz ,  and we may write (3) in the integrated form 

F, - ksp = const. (4) 
Combining (2) and (3), we find 

W P  = H'/s+ kV20'. ( 5 )  

Pellew & Southwell assume that w and 0' are separable functions of 
x, y and I ,  and that 

(6) 
a2 
h2 

vzw = - - w, 1 

where h is the distance between the plates and a is a ' characteristic number ' ; 
the same assumptions will be adopted here. 

Further let 

so that 
1 

h2 
V ~ W  = - (D2 - a2)w. 

The elimination of 0' between equations (1) and (5) leads to 

Since p is a function of z only, (8) can be rewritten, with the use of (6)  
and (7), as 

(9) 
a2 V : H  kv (D2 - a2)3w 
h'iwp = - - + -  

S ug h6 ' 

We shall seek values of the Rayleigh number 

where 7 is the mean value of ,f3 throughout the fluid, at which there is 
marginal stability. In  general R will be a function of a2, and the condition 
for marginal stability is found by minimizing R with respect to this para- 
meter, together with any other variable parameters which are introduced. 

The  simplest boundary conditions will be used ; these are that the plates 
are free and conducting surfaces, i.e. 

w = D 2 w = O = O  at g =  & $  (11 a) 
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Since temperature is assumed constant over the boundaries, these conditions 
also require that 

D4w = 0 at 5 = *$. (11 b) 
With these boundary conditions the problem without radiative transfer 

(which will be referred to as the conventional Rayleigh problem) can be 
solved exactly, giving the critical Rayleigh number as 

3. APPROXIMATE FORMS FOR VfH'  
The functionVFH' can be expressed in the form of a complicated integral 

over the whole fluid. The  solution of even a very simple equation of the 
type H, = 0 is a matter of great difficulty (see, for example, Chandrasekhar 
1950), and can only be achieved by iterative methods. In  view of the 
present state of mathematical techniques, an exact solution of (9) does not 
seem possible. There are, however, two simple approximate forms for 
V:H', one valid when the fluid is optically thick and the other when it is 
optically thin. When numerical values are inserted, there is remarkably 
little doubt about the way in which these two solutions join up. 

The  equation of transfer for the problem is (Kourganoff 1953) 

d*) = K [ B - I ( s ) ] ,  
ds 

where K is the coefficient of absorption per unit volume, I (s )  the intensity of 
radiation in the direction of the vector, s, B the Planck black-body intensity, 
and ds is an infinitesima1 displacement in the s direction. The  radiative 
heating rate is 

(14) 

where w is an element of solid angle, and the integral is taken over a solid 
angle of 4n. Since the black-body intensity is isotropic, we have from (13) 
and (14)  

H = - 4 n ~ B  + K  j I ( S )  dw. (15) 

The first term on the right hand side of (15) represents the cooling at a 
point in the fluid due to the emission of thermal radiation at the local tem- 
perature. The second term represents the heating due to absorption of 
radiation emitted by other elements of the fluid and by the boundaries. The 
mean free path of the radiation is K - ~ ,  and the main contribution to this 
second term will come from points spaced at about this distance from the 
point under consideration. From (6) the dimensions of a convection cell 
are seen to be of the order of h/a ; so, if K - ~  9 h/a, the irradiation at each point 
will originate either far outside the cell which contains the point, or from the 
boundaries. In  this case the irradiation will not vary much over distances 
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comparable with a cell dimension, and the variability of H will be chiefly 
due to the variability of B. Hence 

0:H = -4n~VfB.  (16) 
This will be called the ' transparent ' approximation to equation (19, 

By Stefan's law we have that 
valid when K2h2 << a2. 

n~ = ue4, (17) 

where D is Stefan's constant. 
approximately 

For a small temperature range we may write 

and treat Q as a constant. 
have from (1 8), (16) and (1) that 

Since 0, and H, are not functions of x and y ,  we 

For large K ,  H can be expanded in a power series in terms of K - ~ .  

A formal solution of equation (13) is 

l ( s )  = e-KSJsKeKuB(u) Q du, (20) 

where q remains to be determined from the boundary conditions. The 
boundary conditions will have an appreciable effect only at distances less 
than K - ~  from the boundary, and outside these regions we may neglect the 
contribution from the lower limit of the integral in (20). Successive partial 
integrations then yield 

and hence using (14), we obtain 

Now 

where pl, p2 and p3 are the three directional cosines of s. B does not depend 
on the direction of s, nor do its partial differentials with respect to x, y, z. 
A typical term in the first integral in (22) is therefore aB/ax Jpl dw, which is 
zero. The second integral involves integrals like Jpl p2 dw, which are zero, 
and integrals IikeJp? dw, which equal :T. Hence 
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Similar arguments show that the third term on the right hand side of (22) 
is zero, and that the fourth is smaller than the second by a factor of the order 
of a2/(K2h2). Thus, provided ~~h~ 9 a2, 

We will refer to (25) as the ‘opaque’ approximation. This is essentially 
the equation found by Brunt (1944) in his attempt to form an analogy 
between radiative and conductive heat transfer. The quantity b Q / ( 3 ~ )  
has the dimensions of conductivity, and so we introduce the non-dimensional 
ratio 

On substituting (18) 
P RW = 
B 

and, for ~~h~ 9 a2,‘ 

457Q x=m* 
and (25) into (9)’ we find that, for ~~h~ Ba2, 

(D2 - a3)3 
a2 (1 + X)W’ = -  

It is of interest to note that so far no use has been made of the radiative 
boundary conditions in deriving (27) and (28), and that these equations are 
equally valid if the boundaries are black bodies or mirrors. The  nature of 
the boundaries affects only ,f?, the initial temperature gradient. 

4. THE INITIAL STATIC STATE 

I n  the initial static state all quantities will be functions of z only, and 
the equation of transfer (13) becomes 

d I  
d x  

p3- = KrB-11. 

Iterative solutions of one-dimensional radiative equilibrium problems 
all show that remarkably accurate results can be obtained by assuming a 
suitable simple form for the angular distribution of intensity. One of the 
simplest assumptions is the Milne-Eddington approximation : 

qp3, x) = I+@)’ for 0 < 11.3 < 1, 
1(p3, x) = I-(z), for - 1 < p3 < 0. (30) 

By use of this approximation a simple differential equation can be formu- 
lated for the radiative flux: 

F, = j p 3 1  do. (31) 

On integrating (29) over a solid angle of 457, we find 
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and, if (29) is first multiplied by p3, 

27r d 
3 dz 
- -[I+ +I.-] - K F , .  

Elimination of ( I ,  + I-) from (32) and (33) gives 
dB d2F, 

dz2 dz 
-- - b K -  +3K2F,. 

(33) 

(34) 

Elimination of B between (4), (18) and (34) gives the differential equation 
of the problem, and we now require the boundary conditions at the upper 
boundary (2 = h) the molecular diffusion will ensure continuity of 
temperature, and therefore the downward intensity I- will be equal to 
B(h). Substituting I- = B(h) in (32), we get 

But, from (31), 
F,(h) = 7r[I+-I-], 

and therefore 

Similarly, at the lower boundary, 

The solution of the problem is now straightforward, and we find 

!! = Lcoshhci- M ,  
F 
L = x [F sinh $ A  + (3 + 3x)%inh +A + cosh &A]  -I, 1 (39) 

L 

X 
M = - [(3 + 3~) l ’~s inh  +A + cosh $ A ] ,  

where 
X 2  = 3~’h’(1+ x). 

According to (39), /3/p + 1 if either h or x tend to zero independently. 
If X and x are both greater than unity, there is a boundary layer in which the 
variation of temperature is exponential and which tends to a discontinuity 
as h + a. If x 9 X2, /3/p becomes a function of h only; figure 1 shows a 
number of profiles for this limiting case. 

5 .  APPROXIMATE SOLUTIONS 

Pellew & Southwell showed that variational methods can lead to re- 
markably accurate values of the critical Rayleigh number even when the 
precise form of w is not known. The basis of the method is as follows. 
Let the right hand side of either (27) or (28) be written Q(w) where Q is one 
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of two operators both of which, with the boundary conditions ( l l ) ,  can be 
shown to be Hermitian. Consider the function 

w'Q(w') d< 

(41) - t  

= ~ ~ ~ W ' Q ( W ' ~ )  d5' 

where w' is any function which satisfies the boundary conditions (1 1). It 
can be shown that R' is a minimum when w' is the solution of (27)  or (28)  
which leads to the lowest possible Rayleigh number, i.e. the critical Rayleigh 

2.5 

2.0 

I .5 

- P 
,IT 

1.0 

0.5 

Figure 1. as a function of 5 for the limiting case x 9 ,I2. 

Thus, because of (27)  or (28), the minimum of R' will be equal 

The procedure is to choose a physically reasonable function wf which 
R' 

Two functions have been investigated representing two genera1 types 

number Re. 
to Re. 

satisfies the boundary conditions and contains one variable parameter. 
is evaluated and minimized with respect to this variable parameter. 

of motion which may reasonably be expected to occur. The first, 

is the correct symmetrical solution of the conventional Kayleigh problem. In 
this case the variable parameter is n, which can, however, take only integtal 
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values. This function was chosen to represent a disturbance taking place 
through the whole body of the fluid. 

Using the function (42), the integrals in (41) are easily evaluated for 
both the ' transparent ' and ' opaque ' approximations. The resulting 
expressions contain both a2 and n. The value of a2 which makes R' a 
minimum determines the width of the cells in the least stable mode of motion. 
For the ' opaque ' approximation the minimum lies at 

which is the same result as that obtained in the conventional Rayleigh 
problem. For the ' transparent approximation ' the minimum of R' lies 
at a value of a2 lying between (43) and 

I n  this approximation, therefore, the cell width is variable, but whenever 
radiative effects are large one finds that (44) is valid. 

When R' has been minimized with respect to a2, it is clear by inspection 
that the smallest value R' occurs for n = 1.  The same result is, of course, 
found in the conventional Rayleigh problem. 

Approximate values of R, computed in this way are shown in figure 2 
for x = lo3, lo6 and lo9, and for h between 10-1 and lo'. The ' transparent' 
and ' opaque ' approximations are shown in their respective ranges of validity. 
Discussion of these results will be taken up in the next section. 

a2 = n2n3. (44) 

The second form chosen for w' is 

w' = (A+B(2)coth~(+(C(+(3)sinhrl(, (45) 
where A, B,  and C are determined from the boundary conditions (1 1) and 7 
is the variable parameter. If $ 1, this expression is very large for values 
of ( within about 7-l of the boundary values. The reason for adopting this 
function is that the form of P/p given by (39) suggests that motions in the 
temperature boundary layer might possibly become unstable before motions 
through the body of the fluid, and therefore that a function representing 
motions concentrated in a boundary layer should be tried. 

It was conjectured that, for small 7, the critical Rayleigh numbers 
derived from (45) would not differ greatly from those derived from (42). 
since in this case both functions represent motions though the body of the 
fluid. Since we are mainly concerned with results differing greatly from 
(42), it was considered to be sufficient to use (45) in its asymptotic form for 
large 3 and to neglect contributions to the integrals in (41) from the neigh- 
bourhood of 5 = 0. This greatly reduces the labour of the computations, 
and it appears to be fully justified by the way in which, in figure 2, the full 
lines and chain dashed and dotted lines converge as X decreases. 

In  the half-space 5 > 0, the asymptotic form of (45) which fulfills the 
boundary conditions (1 1) is 
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Equation (46) and the appropriate operators for the ' opaque ' and ' trans- 
parent ' approximations can now be substituted in (41)' and expressions 
for R can be found in terms of a2 and q. In doing so, terms of the order of 
x-l were neglected in comparison with unity, since the minimum value of x 
used in the computations is 103. 

~ d ' -  
' .I I 

I 

/ 
1 boundon layer 
/ morioni 
i 
i 

comes from the use of the function (45) with the ' transparent ' approximation. 

In  the case of the ' opaque' approximation, it turns out that R' has a 
minimum with respect to a2 but not with respect to q. This suggests that 
the ' opaque' approximation is never valid for these boundary layer motions. 

In the case of the ' transparent ' approximation, the minimum value of 
R' was found to lie at h2/q2 = 5.11, a2/q2 = 0.372, giving as an estimate of the 
critical Rayleigh number 

,̂"'hx v ' ( 3 + 3 x )  +q 
2 

R, = 11.89- - + (47) 

F.M. 2 F  
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Computations from (47) are shown in figure 2 for h>10, which implies 
q>10(5.11)-1/2 = 4.4, a value large enough for (46) to be a good approxi- 
mation to (45). 

The ' transparent ' approximation is valid provided that 
K2h2/a2 = h2/{ 3a2( 1 + x)) < 1. 

Since the minimum of R' lies ath2 = 13.7a2, this inequality is always satisfied 
provided x >> 4, so that the transparent approximation provides a complete 
solution for large x. Physically this means that, since the radiation boundary 
layer is always smaller than the radiation mean-free-path (boundary layer 
thickness = h k l  = ~ - l [ 3  + 3x]-1'2 << K - ~  for x 3 I), motions occurring in it 
can always be treated by the ' transparent ' approximation. 

DISCUSSION 
Let us first consider the ' body motion ' curves in figure 2. obtained by 

the use of the function (42). The most remarkable result is that there is 
almost no doubt about the form of the solution in the region where neither 
approximate treatment is valid. This means that a reasonably complete 
and satisfactory solution to the problem has been achieved without entering 
into the usual intricacies associated with radiative transfer problems. There 
is therefore every reason to hope that similar methods used on more realistic 
models will yield results of real importance to the study of planetary and 
stellar atmospheres. 

As far as this particular problem is concerned, the results indicate that 
if either h or x is independently less than unity, then there are no radiative 
effects on the convective motions ; they also indicate that Rc = 657, as in the 
conventional Rayleigh problem. If h and x are both greater than unity, 
then the fluid is stabilized. First, the 
effect of radiation on the initial static state is to concentrate the temperature 
variations into boundary layers, leaving the body of the fluid in a more stable 
state. Secondly, the radiative transfer tends to damp out any motions 
which may arise by providing a means of heat transfer from hotter to colder 
parts of the fluid in addition to the molecular diffusion. 

The maximum stabilization is achieved in the case of body motions if 
the fluid is opaque, and then the critical Rayleigh number is 657(1+ x). 
This is exactly the result that would be obtained from the conventional 
Rayleigh problem with a diffusivity k( 1 + x )  in place of k. The same result 
was obtained by Brunt (1944). 

With regard to the ' boundary layer' curves in figure 1, the most re- 
markable fact is again that an approximate solution has been obtained by 
comparatively simple methods, and in this case the solution is valid for all 
values of h under consideration. For large values of h, when the ' opaque ' 
approximation is valid for the body motions, the critical Rayleigh numbers 
are much higher in the case of the boundary layer motions, and so these 
motions should not occur. For smaller values of A, the two sets of curves 
converge, and in general the boundary layer motions are more stable except 

This stabilization has two aspects. 
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near X = lo2 for x = lo9. It is very doubtful whether much physical signi- 
ficance should be attached to the apparent change of regime that the mathe- 
matical analysis indicates. It is much more likely that, where the boundary 
layer and body motion curves lie close to each other, the motion is very much 
more complicated than equations (42) and (45) would suggest, and that they 
both give approximate critical Rayleigh numbers which are considerably 
too high. 

The  results presented here may have some bearing on a suitable labora- 
tory experiment. Large radiative effects are more likely if a gas rather 
than a liquid is used as a fluid ; but, unfortunately, radiative transfer in a gas 
at normal temperatures will be by vibration-rotation bands of great com- 
plexity for which a mean absorption coefficient has little meaning. Never- 
theless, a crude estimate can be made for water vapour at S.T.Y. from 
data given by Cowling (1950) ; this is K = 2 x 10- cm-1 (the uncertainty 
in this figure may be as high as an order of magnitude). With 
TQ = 6 x lo3 erg ~ m - ~ s e c - l  deg-l (corresponding to 273°K) and ks (thermal 
conductivity) = 2 x lo3 erg cm-1 sec-l deg-1, there results x = 2 x lo2 and, if 
Iz = 10 cm, A = 3.  Inspection of figure 2 suggests that the critical Rayleigh 
number might be twice as great as without radiative transfer, which is a 
difference which should be detected easily in the laboratory. 

Planetary and stellar atmospheres have been mentioned, and it is of 
interest to record the magnitudes involved. In  the earth’s atmosphere 
x might be of the order of lo5, and motions on the scale of 1 km can be 
treated with the ‘ opaque ’ approximation. Just beneath the surface of the 
solar photosphere (van der Hulst 1953, Minnaert 1953), x is of the order 
of 10l2, and motions on the same scale as a solar granule must be treated 
with the ‘ opaque ’ approximation. 

The  author is indebted to D r  W. V. R. Malkus for many interesting 
discussions on convection problems, and to Mr  J. S. A. Green for checking 
this paper carefully. 
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